

CNC ROTARY TABLE SERIES

Made in Japan, Made by

NIKKEN is one of the few manufacturers of machine tools that designs and manufactures in-house the key components of its rotary tables in order to realize the exceptional performance customer requirements.

■Spirit of Innovation In pursuit of exceptional performance

Our name "NIKKEN" derives from Japanese characters meaning "doing research & study every day," and this expresses the spirit of our company. Today this spirit is alive in each and every component of our innovative NIKKEN CNC rotary table products. To achieve unmatched high precision, high rigidity, and durability, we utilize a variety of key components incorporating our own innovative ideas, rather than relying on off-the-shelf parts. This is exactly what NIKKEN CNC rotary tables makes the superior performance possible.

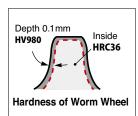
■Long Life Concept In-house design and manufacturing for secure environment

Although our products are highly durable, it is necessary to replace parts occasionally due to breakdowns or maintenance. Since NIKKEN designs and manufactures key components in-house, our customers avoid the risk of not being able to perform product repairs or maintenance due to being discontinued off-the-shelf parts. You can continue to rely on our high-precision products under secure environment over the long term. This is a key concept behind NIKKEN products.

The Heart of NIKKEN CNC Rotary Table

Carbide Worm System ●

Solid Carbide Worm Screw


This is NIKKEN s unique design, superior to traditional steel worm screw. olid carbide worm screw is allowed longer life and minimal wear

compared to tradition al worm system to use specially hard material. This alongs with the hand pairing of the custom made steel worm wheel to eliminates backlash.

HV980 Heat Treated Steel Worm Wheel

The material used for the NIKKEN worm wheel is custom made steel, specially hardened and ion nitrided on the teeth. As a consequence, frictions between the gears are eliminated.

Unique "Bearing system"

Independent Double Thrust and Radial Bearing System •

NIKKEN Bearing system allow for more points of contact versus traditional ball bearings of cross roller bearings, resulting in smooth and accurate rotation.

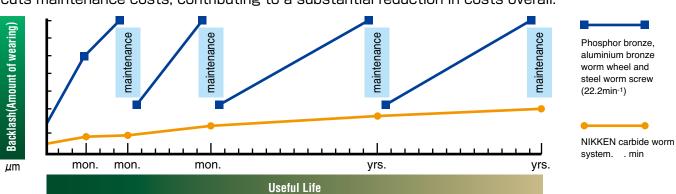
■Thr t :T b lar Thr t eari

Tubular thrust bearings dampen vibration and protect the internal gears during crash situations.

adia I: eedle oller eari

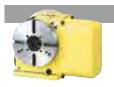
The high accuracy is implemented in "Hand picked and matched" Needle Roller Bearings between rotary table and faceplate assembly assuring the utmost rotation accuracy and elimination of any play or unnecessary movement between the two parts.

NIKKEN.



RIGIDITY

ACCURACY


DURABILITY

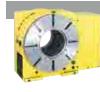
Our thoroughgoing passion for high rigidity and high precision results in products of excellent durability that retain their precision even after long-term use. This boosts the operating ratio and cuts maintenance costs, contributing to a substantial reduction in costs overall.

NIKKEN CNC rotary table extensive

COMPACT P7 - P10 105, 180, 202, NEW CNC205

STANDARD P11 - P14 CNC260, 302, 321, 401 501, 601, 803, 1003

LARGE P15 - P16 CNC1000,1200, 1201, 1600


TOP SIDE MOTOR MOUNTED P17 - P20

CNC202T, 260T, 302T
321T, 401T, 501T, 601T

CK SIDE MOTOR MOUNTED P21 - P22

CNC180B, 202B, 260B
302B, 321B, 401B

BIG BORE P23 - P24 CNCB350, B450, B630

CNC100-2W, 3W, 4W, 180-2W, 202-2W, 260-2W

COMPACT P27 - P32

NEW NCT200, NCT200E

TH COUPLING INDEX P33 - P34 | NSVZ180, 300 | NSVX400, 400T, 500 |

NST

NIKKEN

lineup to match your own applications.

COMPACT P37 - P40 **NEW 5AX-100,130** 201

STANDARD P41 - P44 5AX-230, 250, 350, 550

LARGE P45 - P46 5AX-800,1200



5AX-2MT-105, 4MT-105

Notes on the Use of DD TABLES

P51 DD180, 250, 400

P56

SERVO MOTOR

SERVO MOTOR P57 - P58

Servo Motor List • Relation between Unbalancing load and Servo Motor • Flow Chart of the Additional Axis Control

TECHNICAL INFORMATION P75 - P78

ACCESSORIES

SUPPORT TABLE	····· P79 – P80
TAILSTOCK····································	·····P81 - P82
SCROLL CHUCK & POWER CHUCK · · · · · · · · ·	····· P83 - P84
■ CLAMPING DEVICE and T-N UT · · · · · · · · · ·	····· P85 – P86

OPTIONAL EQIPMENTS

■ High Precise Indexing · · · · · · · · · · · · · · · · · · ·	··· P87 – P88
ROTARY JOINT · · · · · · · · · · · · · · · · · · ·	··· P89 – P92
AWC SYSTEM · · · · · · · · · · · · · · · · · · ·	··· P93 – P94
Special Specification·····	···· P95 – P98

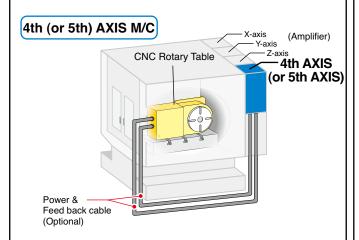
TECHNICAL INFORMATION

■ Accuracy Standard
Description of Specifications, Recommended lubricating Oil and Quantity- P101 — P102
Assessment · · · · · P103
Load Calculation, Indexing Time, Comparaison, Durability · · P 1 O 4
Technical Information P105

WORLDWIDE NETWORK

■ Headguater····· P106
Overseas Sales & Service Network·····P107
■ Worldwide Sales Branch · · · · · · P108 − P112
Check Sheet for the Technical Specifications of CHC Rotary Table \cdot P113 $-$ P114

How to Select Your Best CNC Rotary Table

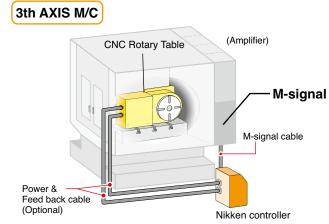

1 How CNC Rotary Table is Controlled

Additional Axis

You can choose additional axis when the machine has 4th or 5th axis.

CNC rotary table can be controlled by machine in this case.

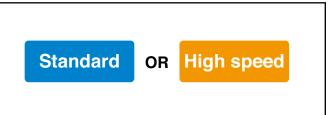
- 1. 4th or 5th amplifier is required for the machine. It should be used exactly the same one used for X, Y and Z axis. Install same servomotor(s) used for X, Y and Z axis.
- 2. The type of the servomotor or amplifier is defined by the types of rotary table.
- 3. Decide by whom servomotor will be supplied.
- 4. External dimensions and specifications depend on the type of servomotor.
- 5. Parameter configuration, hydraulic connection, wiring and installation of amplifiers should be provided by machine tool

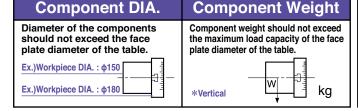


NIKKEN Controller (M-signal)

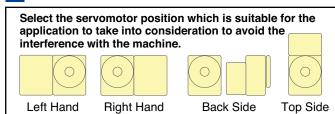
You can choose NIKKEN Controller when the machine doesn't have additional axis.

Note: at least one M-signal code is required.


- At least one M-Signal is required on the machine.
 Input M-signal as "index start" command on the machine, high accuracy indexing, equally divided indexing (2-9999), or lead operation is allowed.
- Control unit, servo-motor and all cables will be supplied by NIKKEN.

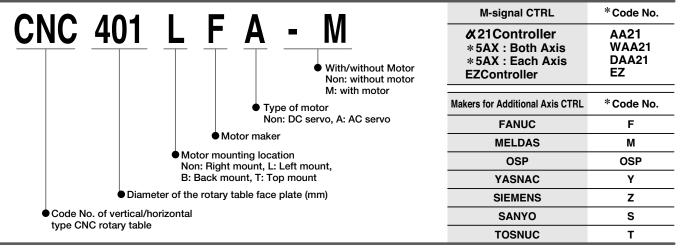

2 Select +1 AXIS or +2 AXIS

5 High Speed or Standard?

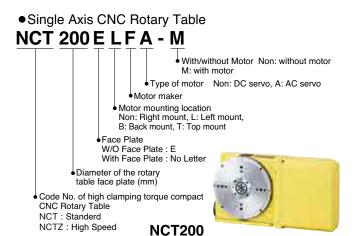

3 Select Face Plate Diameter

6 Select Options

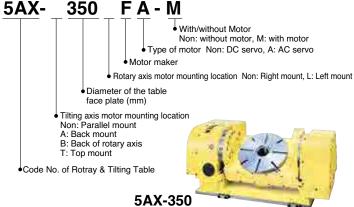
4 Select the Servomotor Position

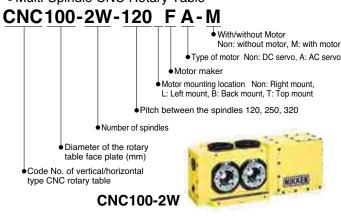


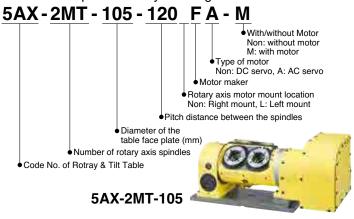
7 Select Accessories

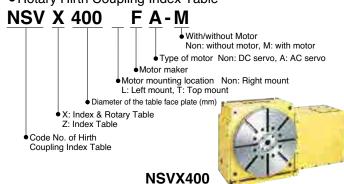


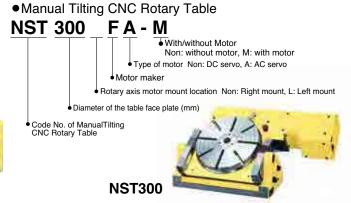
How to Read Product Code




Servomotors for Brother **SPEEDIO** is exclusive. EX.)NCT □ 200 □ SA-BR2 The last part of the product code must be "SA-BR2".


●5AX Rotary & Tilting Table


Multi-Spindle CNC Rotary Table



● 5AX Multi Spindle Rotary & Tilting Table

• Rotary Hirth Coupling Index Table

COMPACT CNC ROTARY TABLE

CNC105 and accessories

- Wide application can be offered from small drilling press to M/C
- Suitable for indexing/leads cutting of small size work pieces
- Various kinds of the work chucking attachments can be offered from 5C collet fixtures to the air/hyd. chuck

Specifications

():High Speed CNC ROTARY Table Z series

Item	/ Code No.	CNC105 CNCZ105	CNC180 CNCZ180	CNC202 CNCZ202
Diameter of Ta	able ¢mm	105	180	200
Diameter of S	pindle Hole	Ф60н7 Ф30	Ф60нт Ф40	Ф60н7 Ф40
Center Height	mm	105	135	135
Width of T Slo	t mm	Ф10H7 Pin hole	12 +0.018	12 +0.018
Clamping Sys	tem	Pneumatic*4	Pneumatic*4	Pneumatic*4
Clamping Tord	que N·m	205	303	303
Table Inertia at M	otor Shaft $(\frac{GD^2}{4})$ kg·m ² ×10 ⁻³	0.06	0.08	0.09
Servo Motor	min ⁻¹	αiF1⋅3000	α iF2·3000	αiF4•3000
MIN. Increme	nt	0.001°	0.001°	0.001°
Rotation Spee	ed min ⁻¹	33.3(66.6)	33.3(66.6)	33.3(66.6)
Total Reduction	on Ratio	1/90(1/45)	1/90(1/45)	1/90(1/45)
Indexing Accu	racy sec	±30	±20	±20
Net Weight	kg	32	45	55
MAX. Work Load	Vertical kg	30	100	100
on the Table	Horizontal kg	60	200	200
MAX.	N N	8800	18000	18000
Thrust Load applicable on the	*1 F×L N·m	275	542	542
Table	FXL N·m	220	690	690
Guide Line of MAX. Unbalancing Load	*2 N·m	-	30	50
MAX. Work Inertia	Vertical $(\frac{GD^2}{4})$ kg·m ²	0.04(0.02)	0.4(0.2)	1.0(0.5)
Driving Torque	*3 N·m	36(27)	72(54)	144(115)

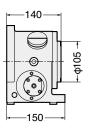
^{*1} This is the strength of the worm wheel without brake. It is applied against dynamic cutting thrust.

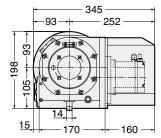
^{*2} The guide line of MAX unbalancing load means the unbalancing load, when the rotary table is used with support table in vertical application. The guide line figure will be different according to the servo motor, please refer to P.57 for more detail.

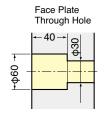
^{*3} Driving torque means the torque at MAX. rotation speed after acceleration. Driving torque is almost constant and independent from the load except unbalancing load is applied.

^{*4} Air Intensifying Booster system is available if the supplied air pressure is under 0.5MPa or the brake torque is required to increase. 🖙 P.95

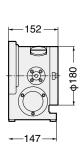
[★] αiF4/5000 motor can be mounted on CNC180.

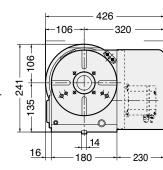

CNC105, 180, 202

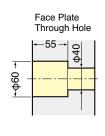



External dimensions depend on the type of the servo motor. Indicated dimensions are in case of FANUC. Please contact us for CAD files (2D:DXF, 3D:PARASOLID).

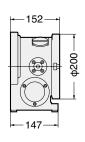
CNC105, CNCZ105

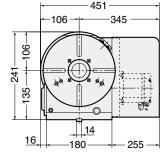


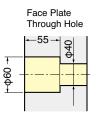



Air purge function is provided inside the motor cover as standard.

CNC180, CNCZ180






Air purge function is provided inside the motor cover as standard.

CNC202, CNCZ202

Air purge function is provided inside the motor cover as standard.

COMPACT CNC ROTARY TABLE

Ultra Slim Model for Trunnion Application

CNC205

98mm

Ultrathin Specification to Maximize Machining Space

Demonstrates the true worth of a compact machining center with limited machining space.

The body thickness of 98mm is 54mm slimmer than previous models. Allows enlargement of the cradle jig work mounting area on machines with limited machining space, such as the BT30 compact machining center.

Built-in

Supports Mounting of Built-in Rotary Joints

Automated component mounting/unmounting with minimal increase in size.

The rotary table body is already provided with IN ports, so the rotary joint specification can be changed with minimal increase in the body dimensions.

380Nm

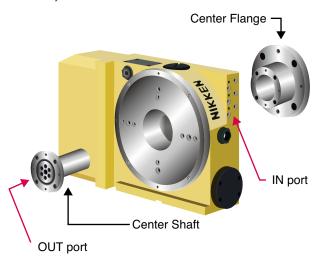
Air-hydraulic Unit Provided as Standard Equipment

Astoundingly powerful clamping capability in spite of the slim body

For machines with no hydraulic power source, the air-hydro unit provides powerful hydraulic supply functionality using only an air supply. In spite of its slim body, it delivers an astounding 380 Nm of clamping power, enabling a variety of applications, such as use of a cradle jig.

High Speed

Z Type is also Available


Reducing cycle time enhances productivity

The lineup also includes the highly rotatable Z type that further reduces machining cycle time. By setting the speed reduction ratio to 1/2 that of the standard type, 200% speedup is achieved.

Ultra-slim

Ultrathin Support Table is also Available.

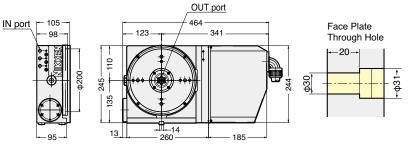
Contributes to a further expansion of machining area when used with the CNC205.

IEW

Ultrathin Support Table with Clamping System

Ex.)

Trunnion Application with CNC205L and a Support Table



Rotary joint is included in the photo.

*Rotary joint is included in the layout with α21 controller.

Specifications

Iter	n / Code No.	Standard	High Speed	
Right Hand Mounted Moter		CNC205	CNCZ205	
Left Hand M	ounted Moter	CNC205L	CNCZ205L	
Diameter of T	able	200	200	
Diameter of S	pindle Hole	Ф30н7	Ф30н7	
Center Height	: mm	135	135	
Width of T Slo	ot mm	_	_	
Clamping Sys	tem	Air Hydraulic Booster Built-in type	Air Hydraulic Booster Built-in type	
Clamping Tor	que N·m	380	380	
Table Inertia at	Motor Shaft $(\frac{GD^2}{4})$ kg·m ² ×10 ⁻³	0.15	0.15	
Servo Motor	min ⁻¹	αiF2•3000	αiF2•3000	
MIN. Increme	nt	0.001°	0.001°	
Rotation Spee	ed min ⁻¹	33.3	66.6	
Total Reduction	on Ratio	1/90	1/45	
Indexing Accu	iracy sec	±20	±20	
Net Weight	kg	45	45	
MAX. Work Load	Vertical kg	100 (with suppart)	100 (with suppart)	
on the Table	Horizontal kg	_	_	
MAX. Thrust Load	*1 FXL N·m	670	670	
applicable on the Table		690	690	
Guide Line of MAX. Unbalancing Load	*2 N·m	30	30	
MAX. Work Inertia	Vertical $(\frac{GD^2}{4}) \text{ kg·m}^2$	0.40	0.20	
Driving Torque	*3 N·m	72	54	

^{*1} This is the strength of the worm wheel without brake. It is applied against dynamic cutting thrust.

^{*2} The guide line of MAX unbalancing load means the unbalancing load, when the rotary table is used with support table in vertical application. The guide line figure will be different according to the servo motor, please refer to P.57 for more detail.

^{*3} Driving torque means the torque at MAX. rotation speed after acceleration. Driving torque is almost constant and independent from the load except unbalancing load is applied.

STANDARD CNC ROTARY TABLE

- The rotary table can be used vertically or horizontally depending on the application
- Best match for a medium-size machining center
- Standard model with motors mounted on the body side

M-SIGNAL METHOD

Specifications

):High Speed CNC ROTARY Table Z series

Iten	n / Code No.	CNC260 CNCZ260	CNC302*4 CNCZ302	CNC321*4 CNCZ321	CNC401 CNCZ401
Diameter of Table \$\phi\$mm		260	300	320	400
Diameter of S	pindle Hole	ф80н7	ф80н7	ф105н7	ф105н7
Center Height	mm	170	170	230	230
Width of T Slo	t mm	12 +0.018	12 +0.018	12 +0.018	14 +0.018
Clamping Sys	tem	Pneumatic*3/ Hydraulic	Pneumatic*3 / Hydraulic	Hydraulic	Hydraulic
Clamping Tord	<u> </u>	588 / 1568	588 / 1568	1760	1760
Table Inertia at M	otor Shaft $\left(\frac{GD^2}{4}\right) \text{ kg·m}^2 \times 10^{-3}$	0.33	0.33	2.8	2.8
Servo Motor	min ⁻¹	αiF4•3000	αiF4•3000	αiF12•2000	αiF12•2000
MIN. Incremer	nt	0.001°	0.001°	0.001°	0.001°
Rotation Spee	ed min ⁻¹	25.0(50.0)	25.0(50.0)	22.2(44.4)	22.2(44.4)
Total Reduction	on Ratio	1/120(1/60)	1/120(1/60)	1/90(1/45)	1/90(1/45)
Indexing Accu	racy sec	20	20	15	15
Net Weight	kg	115	120	200	230
MAX. Work Load	Vertical kg	175	175	250	250
on the Table	Horizontal kg	350	350	500	500
MAX.	N N	42480	42480	53100	53100
Thrust Load applicable on the	*1 FXL N·m	1442	1442	2648	2648
Table	FXL N·m	2320	2320	3840	3840
Guide Line of MAX. Unbalancing Load	*2 N·m	50	50	100	100
MAX. Work Inertia	Vertical $(\frac{GD^2}{4})$ kg·m ²	3.2(1.6)	3.2(1.6)	6.4(3.2)	6.4(3.2)
Driving Torque	*3 N·m	192(153)	192(153)	432(345)	432(345)

^{*1} This is the strength of the worm wheel without brake. It is applied against dynamic cutting thrust.

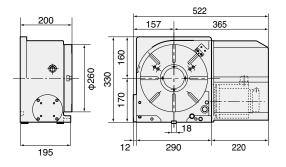
^{*2} The guide line of MAX unbalancing load means the unbalancing load, when the rotary table is used with support table in vertical application. The guide line figure will be different according to the servo motor, please refer to P.59 for more detail.

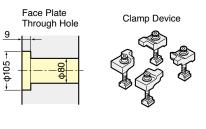
^{*3} Air-air Booster system is available if the supplied air pressure is under 0.5MPa or the brake torque is required to increase. 🖙 P.95

^{*4} CNC302,321 is semi-standard model.

[★]The air-hydraulic booster is available, when the rotary table with hydraulic clamping system is used on the M/C without hydraulic source, please refer to F.95.

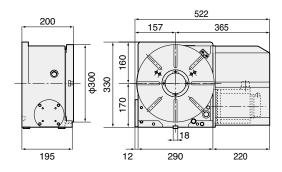
[★] XiF8/4000 motor can be mounted on CNC260, 302.

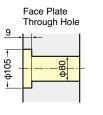




External dimensions depend on the type of the servo motor. Indicated dimensions are in case of FANUC. Please contact us for CAD files (2D:DXF, 3D:PARASOLID).

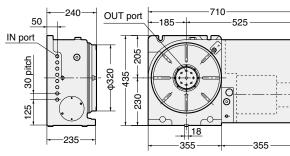
CNC260, CNCZ260

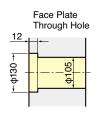


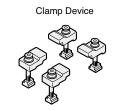


For the rotary table with pneumatic clamping, air purge function is provided inside the motor cover as standard.

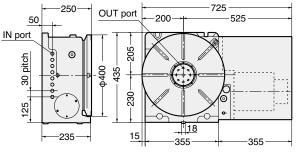
CNC302, CNCZ302

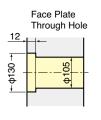


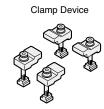



For the rotary table with pneumatic clamping, air purge function is provided inside the motor cover as standard.

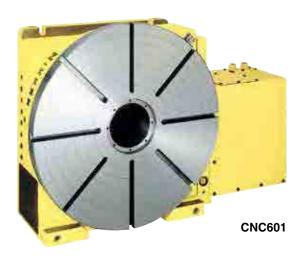
CNC321, CNCZ321




Rotary joint is included in the layout. (optional)


CNC401, CNCZ401

Rotary joint is included in the photo. (optional)



STANDARD CNC ROTARY TABLE

- Dividing and lead cutting for large size work piece is suitable
- Large through hole and powerful clamping system
- Ideal for deep cutting of highly rigid material

- MOTOR MOUNTED -

- FACE PLATE

- M-SIGNAL METHOD -

WITH FACE PLATE

P.59

Specifications

):High Speed CNC ROTARY Table Z series

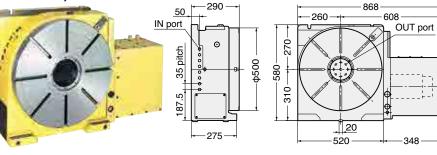
 Iter	m / Code No.	CNC501 CNCZ501	CNC601 CNCZ601	CNC803	CNC1003
Diameter of T	able	500	600	800	1000
Diameter of S		Ф130н7	Ф130н7	Ф230н7	Ф230н7
Center Height	· · · · · · · · · · · · · · · · · · ·	310	310	550	550
Width of T Slo	ot mm	14 +0.018	14 ^{+0.018}	22H7*4	22H7*4
Clamping Sys	tem	Hydraulic	Hydraulic	Hydraulic	Hydraulic
Clamping Tor	que N·m	4655	4655	7000	7000
Table Inertia at M	lotor Shaft $(\frac{GD^2}{4})$ kg·m ² ×10 ⁻³	6.8	4.9	6.2	6.3
Servo Motor	min ⁻¹	αiF12•2000	αiF12•2000	αiF30•2000	αiF30•2000
MIN. Increme	nt	0.001°	0.001°	0.001°	0.001°
Rotation Spee	ed min ⁻¹	16.6(33.3)	11.1(22.2)	5.5	5.5
Total Reduction		1/120(1/60)	1/180(1/90)	1/360	1/360
Indexing Accu	iracy sec	15	15	15	15
Net Weight	kg	470	500	2070	2210
MAX. Work Load on the Table	Vertical kg	400	400	2000	2000
	Horizontal kg	800	800	4000	4000
Load applicable	N	150000	150000	281250	281250
	*1 FXL N·m	5709	5709	20067	20067
on the Table	F×L N·m	16650	16650	42190	42190
Guide Line of MAX. Unbalancing Load	*2 N·m	200	200	300	300
MAX. Work Inertia	Vertical $(\frac{GD^2}{4})$ kg·m²	19.4(9.7)	37(18.5)	234	234
Driving Torque	*3 N·m	576(460)	864(690)	3168	3168

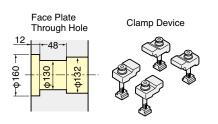
^{*1} This is the strength of the worm wheel without brake. It is applied against dynamic cutting thrust.

^{*2} The guide line of MAX unbalancing load means the unbalancing load, when the rotary table is used with support table in vertical application. The guide line figure will be different according to the servo motor, please refer to 🖙 P.59 for more detail.

^{*3} Driving torque means the torque at MAX. rotation speed after acceleration. Driving torque is almost constant and independent from the load except unbalancing load is applied.

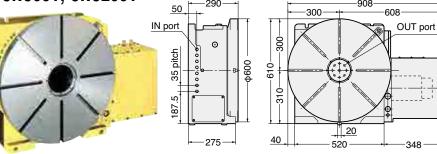
[★]Total reduction ratio of 1/180 is also available for CNC501T. ★ α iF22/4000 motor can be mounted on CNC501, 601.

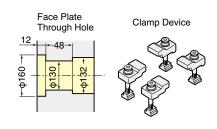



CNC501, 601, 803, 1003

External dimensions depend on the type of the servo motor. Indicated dimensions are in case of FANUC. Please contact us for CAD files (2D:DXF, 3D:PARASOLID).

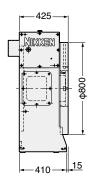
CNC501, CNCZ501

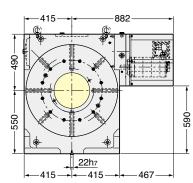


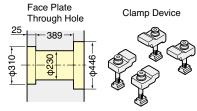


Rotary joint is included in the layout. (optional)

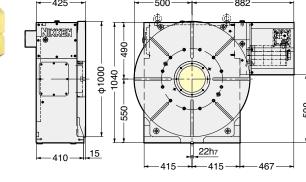
CNC601, CNCZ601

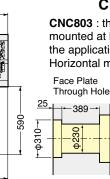


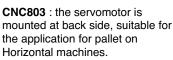



Rotary joint is included in the layout. (optional)

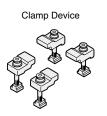
CNC803







CNC1003



CNC803B

LARGE CNC ROTARY TABLE

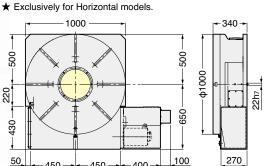
- Ideal for indexing and lead cutting of large work pieces
- Tooth thickness module 10 and ultrahigh rigidity among best in class.(CNC1600)
- Ideal for aircraft- and energy-related parts

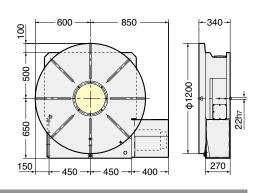
P.89

Specifications

The specification will be varied according to your application. Please contact us.

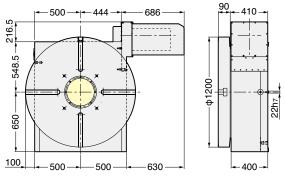
Iter	n / Code No.	CNC1000*1	CNC1200*1	CNC1201*1	CNC1600*1
Diameter of T	able	1000	1200	1200	1600
Diameter of S	pindle Hole *2	300н7	300н7	300н7	400н7
Center Height	mm	Horizontal	Horizontal	650	850
Width of T Slo	ot *3 mm	22H7*3	22н7 ^{*3}	22H7*3	28H7*3
Clamping Sys	tem	Hydraulic	Hydraulic	Hydraulic	Hydraulic
Clamping Tor	que N·m	18000	18000	18000	35000
Servo Motor	min ⁻¹	αiF22	2•2000	αiF30•2000	
MIN. Increme	nt	0.001°	0.001°	0.001	0.001
Rotation Spec	ed min ⁻¹	5.5	5.5	2.7	2.7
Total Reduction	on Ratio*4	1/360	1/360	1/720	1/720
Indexing Accu	iracy sec	15	15	15	15
Indexing Accur	acy of Ultra Precision sec	±3	±3	±3	±3
Net Weight	kg	1700	1850	3500* ⁵	5250 *5
MAX. Work Load	Vertical kg			6500	10000
on the Table	Horizontal kg	7000	7000	13000	30000
MAX.	N N	281250	375000	1333330	2000000
Thrust Load applicable on the Table	*6 FXL	24080	24080	79025	111952
on the rable	F×L N·m	42190	67500	240000	510000
MAX. Work Inertia	Vertical kg·m²	1300	1300	2300	6400
MAX. Allowable Torque	N·m	3168	3168	8640	8640

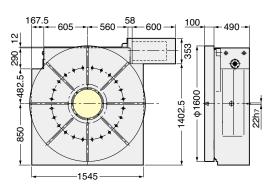

- CNC1000, 1200, 1600 is semi-standard model.
- The diameter of the spindle hole is restricted for the ultra precision type with Heidenhain rotary encoder. Standard large rotary tables are without T slot. T slot is available as an option, please specify the width of the T slot.
- Total reduction ratio and motor can be changed according to your application, please contact us.
- *5 Net weight of the rotary table is for horizontal application. The weight of the back support for vertical application is not included.
- *6 This is the strength of the worm wheel without brake. It is applied against dynamic cutting thrust.


CNC1000, 1200, 1201, 1600

External dimensions depend on the type of the servo motor. Indicated dimensions are in case of FANUC. Please contact us for CAD files (2D:DXF, 3D:PARASOLID).

CNC1000,1200





 \bigstar Please contact us about the back support for vertical use.

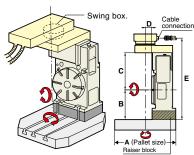
CNC1600

 \bigstar Please contact us about the back support for vertical use.

Configuration of the large rotary table on the horizontal M/C to machine a propeller hub of the windmill.

Indexing of the turbine shaft

TOP SIDE MOTOR MOUNTED CNC ROTARY TABLE



Ideal for automation of small parts by mounting of jig holder

Also ideal for B-axis of generalpurpose horizontal machining center. Figure at right shows example of pallet mounting.

Please specify A, B, C, D and E.

Specifications

):High Speed CNC ROTARY Table Z series

Iter	m / Code No.	CNC202T CNCZ202T	CNC260T CNCZ260T	CNC302T *5 CNCZ302T
Diameter of T	able	200	260	300
Diameter of S	pindle Hole	ф60н7 ф40	ф80н7	ф80н7
Center Height	mm	150	170	170
Width of T Slo	ot mm	12 ^{+0.018}	12 +0.018	12 +0.018
Clamping Sys	tem	Pneumatic*4	Pneumatic*4 / Hydraulic	Pneumatic*4 / Hydraulic
Clamping Tor	que N·m	303	588 / 1568	588 / 1568
Table Inertia at I	Motor Shaft $\left(\frac{\text{GD}^2}{4}\right) \text{ kg} \cdot \text{m}^2 \times 10^{-3}$	1.0	1.5	1.5
Servo Motor	min ⁻¹	αiF4•3000	αiF4•3000	αiF4•3000
MIN. Increme	nt	0.001°	0.001°	0.001°
Rotation Spee	ed min ⁻¹	25.0 (50.0)	25.0 (50.0)	25.0 (50.0)
Total Reduction	on Ratio	1/120 (1/60)	1/120 (1/60)	1/120 (1/60)
Indexing Accu	iracy sec	±20	20	20
Net Weight	kg	70	160	165
MAX. Work Load	Vertical kg	100	175	175
on the Table	Horizontal kg			
MAX.	N N	18000	42480	42480
Thrust Load applicable on the	*1 FXL N·m	542	1442	1442
Table	FXL N·m	690	2320	2320
Guide Line of MAX. Unbalancing Load	*2 N·m	50	50	50
MAX. Work Inertia	Vertical $(\frac{GD^2}{4})$ kg·m ²	1.0(0.5)	3.2(1.6)	3.2(1.6)
Driving Torque	*3 N·m	192(153)	192(153)	192(153)

^{*1} This is the strength of the worm wheel without brake. It is applied against dynamic cutting thrust.

^{*2} The guide line of MAX unbalancing load means the unbalancing load, when the rotary table is used with support table in vertical application. The guide line figure will be different according to the servo motor, please refer to \$\infty\$ P.57 for more detail.

^{*3} Driving torque means the torque at MAX. rotation speed after acceleration. Driving torque is almost constant and independent from the load except unbalancing load is applied.

^{*4} Air Intensifying Booster system is available if the supplied air pressure is under 0.5MPa or the brake torque is required to increase. P.95 *5 CNC302T is semi-standard model. CNCZ series table can not be recommended for the application with large unbalancing load. CNCZ series table is recommended for the application only with light load.