Heat exchanger Oil / water system: plate heat exchanger

AB-E 32-12 2002-11-15

Replaces: Issue 1999-01-20

1 Area of application

The heat exchangers to this standard are soldered plate type heat exchangers, the bases and turbulence plates are made from stainless steel. Turbulence plates with differing forms ensure a turbulent flow. Due to the high thermodynamic utilisation of the heat conducting surfaces the plate type heat exchangers, for the same capacity, are compactor than the tube bundle type heat exchangers (AB-E 32-02/AB-E 32-09).

2 Model

3 Type code

Example:	Waermetausche	er AB3	82-12 / 0	<u>)1</u> I	< -	054	- 2	2
AB standard								
Nominal size			-					
00			= 00					
01			= 01					
02			= 02					
Nominal size, version Short Long				= K = L				
No. of plates 4 to 120 dependant on	capacity				-			
Turbulence plates wa Built-in longitudinally Built-in transversely	rm side 1)						= 1 = 2	
Turbulence plates col Built-in longitudinally Built-in transversely	d side 1)						= 1 = 2	

1) The turbulence plates are selected depending on flow rates and flow losses using the computer selection program.

Bosch Rexroth AG	Department: BRI/TDV3
Industrial Hydraulics	Created: C. Ewald
Zum Eisengießer 1 • D-97816 Lohr am Main	Examined:
Tel.: (0 93 52) 18-0 • Fax: (0 93 52) 18-29 17	Technical responsibility: BRI-AB/PMT
"Copyright reserved"	Page 1/6

Ordering example/match code 4

Heat exchanger to AB-E 32-12, nominal size 00 short, 4 plates, turbulence plate built-in transversely: **WAERMETAUSCHER AB 32-12/00-K-004-22** Material no. **R900028815**

Dimensions 5

 \mathbf{S}_1 Oil in S₂ Oil out S_3 Water in S_4 Water out

Table 1												
Designation:			-	0	Dimer	nsior	S	-	-	-	Empty	
Waermetauscher	b	b ₁	h	h₁	h ₂	h₃	h₄	I	I ₁	l ₂	weight kg	Connection
AB32-12/00-K	111	FO	342	312	274	213	20 E				1,7+0,23xP	c + c - c +
AB32-12/00-L	111	50	507	477	439	378	30,5		30		2,4+0,40xP	$S_1 10 S_4 = G T$
AB32-12/01-K	160	04	451	421	383	309	27.0	1)	52		2,9+0,48xP	$S + S = C + \frac{1}{2}$
AB32-12/01-L	100	94	699	669	631	557	57,0	4 T 4 V D			4,8+0,87xP	$S_1 10 S_4 - G T T_2$
AB32-12/02-K	225	140	554	524	488	403	10 E	4 A F	27	40	5,0+0,83xP	S ₁ + S ₂ = SAE 2" 2)
AB32-12/02-L	220	140	884	854	818	733	42,0		57	42	8,3+1,50xP	S ₃ + S ₄ = G 2"

1) P = No. of plates

Connection SAE 2" standard pressure series (see AB-E 22-15)

ø55 670

Ш П

Connection G1 1/2 : Connection G2

6 Selection table

Table 2

Nominal siz	ze 00, short	Nominal siz	ze 01, short	Nominal size 02, short		
	Design	2-12/				
	Material no.		Material no.		Material no.	
00-K-004-22	R900028815	01-K-030-22	R900028855	02-K-054-22	R900028892	
00-K-006-22	R900028816	01-K-036-22	R900028856	02-K-072-22	R900028895	
00-K-008-22	R900028817	01-K-054-22	R900028859	02-K-088-22	R900028897	
00-K-010-22	R900028818	01-K-066-22	R900028861	02-K-104-22	R900028899	
00-K-014-22	R900028820	01-K-084-22	R900028864			
00-K-018-22	R900028822	01-K-090-22	R900028865			
00-K-030-22	R900028825					
00-K-034-22	R900028826					

7 Suitability

Table 3

	Suitability			
Mineral oils	Mineral oil	HL, HLP	to DIN 51524	
	Emulsions	HFA-E	to DIN 24320	
Fire resistant	Water emulsions	HFC		suitable
pressure fluids	Phosphate ester	HFD-R	to VDMA 24317	
	Organic ester	HFD-U		
Fast bio	Triglyceride (Rape seed oil)	HETG		
degradable	Synthetic ester	HEES	to VDMA 24568	not suitable
pressure fluids	Polyglycole	HEPG		

8 Water quality

Table 4

Water type	Water quality	Source of supply	Suitability	
	Drinking water	Municipal water works, springs		
Sweet water	Industrial water	Cooling tower circuits, factory wells	suitable	
	Stream and river water			
Sea water		High sea		
Brackish water	Mixture of sea and river water	Coastal areas, mouths of rivers, harbours	not suitable	

9 Technical data

Material:	Plates and connections Solder	1.4301 copper
Perm. operating pressure:	oil side water side	16 bar 10 bar
Permissible operating tempe	erature:	200°C

10 Calculations

Table 5				
Min. requirements to e	nable cal	culation:	From these it follows the	nat:
Oil flow	Oil flow V _{Oil} (I/mir		ETD =	t _{oil} - t _{KE} (K)
Power loss	Power loss Inlet temperature (oil)		Inlet temperature	P_V
Inlet temperature (oil)			difference	$P_{01} = \frac{1}{\text{ETD}} (KVV/K)$
Inlet temperature (coolin	ng water)	t _{KE} (°C)	Specific cooling capacity	ETD = 1 K
	HLP	/HFD	HFC	HFA
Cooling	$\Delta t_{Oil} = -$	6 x P _V VOil	$\Delta t = \frac{17.2 \text{ x P}_{\text{V}}}{\text{V}}$	$\Delta t = \frac{14,7 \times P_V}{V} (K)$
Warming H2O	$\Delta t_{K} = \frac{14}{\sqrt{2}}$	<u>х Рv</u> / _к (К)	Cooling water requiremen	ats V_{K} = 0,5 x V_{oil} to diagrams 1 and
Example: Given:			Selected:	
$P_V = 16 \text{ kW}; V_{Oil} = 40 \text{ l/m}$ ETD = 60 - 20 = 40 K; P ₀	$ \lim_{1} t_{Oil} = 6 \\ \frac{16}{40} 0,2 $	0°C; t _{KE} = 20° kW/K	² C; Type AB32-12/0 $\Delta t_{Oil} = \frac{36 \times 16}{40} = 1$	0-K-014-22 (see diagram 1) 4,4 K; Δt _K = $\frac{14 \times 16}{20}$ 11,2 K

Correction factors for capacities p 01 and oil side pressure loss Table 6

Viccosity				ISO	VG			
viscosity	22	32	46	68	100	150	220	320
Factor f1 p 01	1,10	1,06	1,00	0,95	0,88	0,82	0,76	0,70
Factor f2 ∆p oil	0,70	0,80	1,00	1,30	1,70	2,30	2,90	3,90

11 Capacity

A programme is available on the IDV computer to aid in the selection of a heat exchanger. The following diagrams are only intended to enable a quick selection of a suitable heat exchanger.

11.1 Diagram 1

V_{öl} I/min

11.2 Diagram 2

12 Installation guidelines

12.1 Mounting position

The mounting position ca be either horizontal or vertical. The pipe work is to be connected unstressed and vibration free. Flow direction

12.2 Controls

On/off control of the cooling water by means of a water control valve to AB-E 21-23 and thermostat to AB-E 31-32 is preferred to the proportional control of the water supply by a control valve to AB-E 21-22. Proportional control of contaminated water causes floating particles to be deposited, this is due to the low water velocity in the partial load range and leads to corrosion. If contaminated water (industrial, stream or river water) is used for cooling, a dirt trap to AB-E 22-15 should be fitted in the supply line.

12.3 Cleaning, cold side (water)

The flow exchangers to AB-E 32-12 can be cleaned by flushing with water in the opposite direction to the medium flow, or they can be chemically cleaned. Decalcification can be achieved by using a 5% strength citric or acetic acid solution.

13 For other standards see

AB-E 03-18 Sheet 2 Bore face for heat exchangers